
Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

128

A51 Examples

3	 A51 Examples
In this chapter we present a few assembly language programs which use most of the topics discussed in
the previous chapters. Before starting to write the first program, we provide a template which explains the
general organisation of an 8051 assembly language program. The remarks by the side of the instructions
in the template and in the other example programs provide most of the explanations required.

Further examples in C are provided in the Appendix.

3.1	 Template.a51

; Template.a51
$NOMOD51
#include <reg52.inc> 		 ; assuming that we are using an 8032 instead of an 8051
				 ; reg52.inc would include all the SFRs present on the 8032

start 	 equ 0000H 		 ; these equates can be changed if using a development
				 ; board, depending on where the code is to reside.
Ext0_IVA 	 equ 0003H		 ; Interrupt Vector address for External 0 interrupt number 0
TF0_IVA 	 equ 000BH	; Interrupt Vector address for Timer 0 interrupt number 1
Ext1_IVA 	 equ 0013H		 ; Interrupt Vector address for External 1 interrupt number 2
TF1_IVA 	 equ 001BH	; Interrupt Vector address for Timer 1 interrupt number 3
Ser_IVA 	 equ 0023H		 ; Interrupt Vector address for Serial interrupt number 4
TF2_IVA 	 equ 002BH	; Interrupt Vector address for Timer 2 interrupt number 5

Past_IVT equ 0030H

; The following equates are used for RAM zero initialisation routines
IDATASTART 	 EQU 0H 		 ; the absolute start-address of IDATA memory is always 0
IDATALEN 	 EQU 100H 	 ; the length of IDATA memory in bytes for the 8032 (256 bytes).

XDATASTART 	 EQU 0H 		 ; the absolute start-address of XDATA memory (say 8100H)
XDATALEN 	 EQU 0H 		 ; the length of XDATA memory in bytes.

CSEG AT start
	 LJMP Main 		 ; this is the first instruction executed on reset

CSEG AT Ext0_IVA
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above code if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP Ext0_ISR 		 ; to jump to the correct ISR

CSEG AT TF0_IVA
;	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above code if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
	 LJMP TF00_ISR 		 ; to jump to the correct ISR
; and so on for the other interrupts

http://bookboon.com/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

129

A51 Examples

CSEG AT Ext1_IVA
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above code if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP Ext1_ISR 		 ; to jump to the correct ISR

CSEG AT TF1_IVA
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above code if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP TF1_ISR 		 ; to jump to the correct ISR

CSEG AT Ser_IVA
	 CLR RI			 ; good practice to include this if not using interrupt, just in case.
	 CLR TI 			 ; good practice to include this if not using interrupt, just in case.
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above 3 code lines if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP Ser_ISR 		 ; to jump to the correct ISR

CSEG AT TF2_IVA
	 CLR TF2			 ; good practice to include this if not using interrupt, just in case.
	 CLR EXF2		 ; good practice to include this if not using interrupt, just in case.
	 RETI			 ; good practice to include this if not using interrupt, just in case.
				 ; comment above 3 code lines if this interrupt is being used
; or if the ISR code is within 8 bytes long, it can be written directly here.
; if not then use
;	 LJMP Ext0_ISR 		 ; to jump to the correct ISR

; skip over Interrupt Vector Table in the code area
org Past_IVT
Main:
; First clear the 8032 Internal RAM (from 0 to FFH)
	 CLR A

MOV R0,#(IDATALEN - 1)
CLR_RAM:
 	 MOV @R0,A

DJNZ R0,CLR_RAM

; then clear external RAM if required, using conditional assembly, depending on XDATALEN
IF XDATALEN <> 0
	 MOV 	 DPTR,#XDATASTART
	 MOV 	 R7,#LOW (XDATALEN)
IF (LOW (XDATALEN)) <> 0	; check needed so that the DJNZ checks below will work
 				 ; correctly, since if R7 is zero before the DJNZ, it will loop
		 		 ; for 256 times and not zero times.
 				 ; (check with XDATALEN of 255 bytes and then 256 bytes !!)
	 MOV 	 R6,#(HIGH (XDATALEN) +1)
ELSE
	 MOV 	 R6,#(HIGH (XDATALEN))
ENDIF

http://bookboon.com/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

130

A51 Examples

	 CLR 	 A
CLR_XDATA:
	 MOVX 	 @DPTR, A
	 INC 	 DPTR
	 DJNZ 	 R7,CLR_XDATA
	 DJNZ 	 R6,CLR_XDATA
ENDIF

; set up stack pointer, above Bit-addressable area (not necessarily always set to this point)
 	 MOV SP,#2FH

; Program starts here
……………….
……………....
……………….

; Long Interrupt Service Routines can be written here, after the main program
TF0_ISR:
	 PUSH PSW

 ………..
 ……………

	 POP PSW
	 RETI

; Constants can be stored here, at the end of the code area.
 OneHundred: DB 100
 SixHundred: DW 600
 Message: DB “Hello !!”,10,13

; Variables can be stored either in the internal 256 bytes data area or in the external volatile
; memory. Bit variables are stored in the bit data area

MyBits SEGMENT BIT
RSEG MyBits
	 Flag1:	 DBIT 1		 ; 1 bit in Bit-addressable area, allocated to Flag1
	 Flag2:	 DBIT 1		 ; 1 bit in Bit-addressable area, allocated to Flag2

Var1 SEGMENT DATA
RSEG Var1
	 Answer:	 DS	 1	 ; 1 byte in data area, allocated to Answer
	 Year:	 DS	 2	 ; 1 bytes in data area, allocated to Year
	 Month:	 DS`	 1	 ; 1 byte in data area, allocated to Month

Var2 SEGMENT XDATA
RSEG Var2
	 Numbers:	 DS	 500	 ; 500 bytes allocated to Numbers, in external RAM

end

The first real program, SerP3.a51 is a serial port example program (section 3.2) which basically initializes
the UART and then provides routines for reading and writing characters via the UART.

http://bookboon.com/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

131

A51 Examples

The second program (3.3) is a simple Traffic light controller which also uses the SerP3.a51 routines. It
makes use of Timer 2 interrupt which is used to accurately time the duration in seconds for each traffic
pattern. Note the way the Interrupt Vector Table (IVT) is jumped over when the program starts executing
from location 0000H. For those Interrupts which are not in use, it is generally a good practice to insert
a simple RETI instruction at the corresponding IVT location just in case an inadvertent event causes
an undesired interrupt to occur.

3.2	 Serial Port Example Program

; SERP3.A51
; march 2003 - paul p. debono
; works fine using p3 serial socket
; no interrupts
;
$NOMOD51
#include <reg52.inc>

; These routines are declared PUBLIC so that they can be used in other modules
PUBLIC INIT_SERIAL, TX_CHAR, RX_CHAR
PUBLIC TX_IMSG,TX_CMSG, TX_XMSG
;
; SERIAL PORT RELATED ROUTINES
;
; INIT_SERIAL(BAUDRATE) 	 Initialise Serial port, 9600, 19200 or 57600 baud.
; RX_CHAR()	 		 Receive character from port, (WAIT FOR CHARACTER)
; TX_CHAR(ALPHA) 		 Send character to Port
; TX_MSG(*MESSSAGE) 		 Transmit null terminated string (Internal RAM)
; TX_CMSG(*MESSSAGE) 		 Transmit null terminated string (PROGRAM CODE AREA)
; TX_XMSG(*MESSSAGE) 		 Transmit null terminated string (External DATA AREA)
;

SERIAL_RTN SEGMENT CODE
RSEG SERIAL_RTN

; SUBROUTINES USED IN APPLICATION
;
; ***
;
; serial port support
;
; initialise the serial port for required baud rate,
; not under interrupt control.

; baud rate passed in r7 bank 0
; 	 parameter 96 => 9600 baud
; 	 parameter 192 => 19200 baud
; 	 parameter 57 => 57600 baud

http://bookboon.com/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

132

A51 Examples

INIT_SERIAL:
	 ANL TMOD, #00001111B 	 ; clear all timer 1 bits in tmod
	 ORL TMOD, #20H 		 ; timer 1 8-bit auto reload mode 2
	 CLR RCLK 		 ; use timer 1 for receive baud rate
	 CLR TCLK		 ; use timer 1 for transmit baud rate
	 MOV TH1, #0FDH 		 ; 9600/19200 baud counter value
	 MOV TL1, #0FDH
	 MOV PCON, #0H 		 ; choose 9600 baud
	 CJNE R7, #192, CHK_IF_57
	 MOV PCON, #80H 		 ; choose 19200 baud, smod=1
	 SJMP BAUD_OK
CHK_IF_57:
	 CJNE R7, #57, BAUD_OK
	 MOV TH1, #0FFH 		 ; 57600 baud counter value
	 MOV TL1, #0FFH
	 MOV PCON, #80H 		 ; smod=1
BAUD_OK:
	 CLR ET1 		 	 ; disable timer 1 interrupts, just in case
	 SETB TR1 	 	 ; start timer 1 (tr1 = 1) or mov tcon,#40h
	 MOV SCON, #52H 		 ; 1 start, 8 data, 1 stop bit, RI=0, and setTI=1
				 ; so as to be ready to start the first time
	 			 ; enable receiver (ren=1)

RET

; ***

; ***
; character received through serial port p3, is passed on to r7 bank 0 (address 07)
RX_CHAR:
	 JNB RI, $; wait here for character
	 CLR RI
	 MOV 07, SBUF
	 RET

; ***

; ***
; character in r7 is transmitted through serial port p3
TX_CHAR:
	 JNB TI, $; if tx is ready, then you are clear to send, else wait
	 CLR TI
	 MOV SBUF, 07	 	 ; transmission starts, t1 set to 1 when ready

; the following delay might be needed depending on receiving equipment requirements
 	 PUSH B
	 MOV B, #0A0H 		 ; small delay between transmissions
	 DJNZ B, $; since we are not using any handshaking
	 POP B

RET

; ***

; ***

http://bookboon.com/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

133

A51 Examples

; transmit message residing in internal memory
; pointer to message passed in r1
; message must terminate with a null (0) character.
; on exit, r1 is corrupted

TX_IMSG:
	 MOV A, @R1
	 CJNE A, #0, SEND_IT
	 RET
SEND_IT:
	 MOV 07, A
	 ACALL TX_CHAR
	 INC R1
	 SJMP TX_IMSG

; ***

; ***
; transmit message residing in program (code) memory
; pointer to message passed in dph (hi) and dpl (lo)
; message must terminate with a null (0) character.
; on exit, dptr is corrupted.
TX_CMSG:
	 CLR A
	 MOVC A, @A + DPTR
	 CJNE A, #0, SEND_IT2C
	 RET
SEND_IT2C:
	 MOV 07, A
	 ACALL TX_CHAR
	 INC DPTR
	 SJMP TX_CMSG

; ***

; ***
; transmit message residing in external memory
; pointer to message passed in dph (hi) and dpl (lo)
; message must terminate with a null (0) character.
; on exit dptr is corrupted.
TX_XMSG:
	 MOVX A, @DPTR
	 CJNE A, #0, SEND_IT2
	 RET
SEND_IT2:
	 MOV 07, A
	 ACALL TX_CHAR
	 INC DPTR
	 SJMP TX_XMSG

; ***
 END
; ***

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

PaulOS An 8051 Real-Time Operating System
Part I

134

A51 Examples

The second program (section 3.3) is Traffic lights program, and it is targeted to be run from an EPROM.
This means that the code area starts from location 0000H. It is also targeted for the FLT-32 development
board, which has an 8255 input/output chip added on, providing three additional 8-bit ports, labelled
as PORTA, PORTB and PORTC in this program.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

135

A51 Examples

3.3	 Traffic Lights A51 Program

; lesson07EP.a51 targeted for eprom

$NOMOD51
#include <reg52.inc>
; use model for 8032/8052
; this will ensure that the assembler will recognise
; all the labels referring to the various
; Special Function Registers (SFRs).
;
;
; Traffic lights program with TIMER2 delay
; in 16-bit AUTO-RELOAD mode
;
; Timers count up at 12/11.0592 microseconds per count
; i.e. at 1.085 microseconds per count.
; Thus for a 50 millisecond delay, they need to count
; up 50000/1.085 = 46082 times. Hence the counters
; have to be loaded with 65536-46082 = 19454 decimal
; or 4BFEH
;
;
; The following routines are declared as EXTRN (within brackets)
; since they are actually defined in a different module.
;
EXTRN CODE (INIT_SERIAL, RX_CHAR, TX_CHAR)
EXTRN CODE (TX_IMSG, TX_CMSG, TX_XMSG)
;
; serial port related routines found in serp3.a51
;
; INIT_SERIAL(BAUDRATE) 	 Initialise Serial port, 9600, 19200 or 57600 baud.
; RX_CHAR()	 		 Receive character from port, (WAIT FOR CHARACTER)
; TX_CHAR(ALPHA) 		 Send character to Port
; TX_MSG(*MESSSAGE) 		 Transmit null terminated string (Internal RAM)
; TX_CMSG(*MESSSAGE) 		 Transmit null terminated string (PROGRAM CODE AREA)
; TX_XMSG(*MESSSAGE) 		 Transmit null terminated string (External DATA AREA)
;
CR 		 EQU 13
LF 		 EQU 10

CTRL_WD 	 EQU 91H 		 ; control word for the 8255
PORTA 	 EQU 0FF40H 	 ; 8255 ports addresses in FLT-32 board
PORTB 	 EQU 0FF41H
PORTC 	 EQU 0FF42H
CONTROL 	 EQU 0FF43H

; Interrupts vector table location when targeting EPROM.
RESET 		 EQU 0000H
EXT0_ISR_VEC 		 EQU 0003H
T0_ISR_VEC 		 EQU 000BH
EXT1_ISR_VEC 		 EQU 0013H
T1_ISR_VEC 		 EQU 001BH
SERIAL_ISR_VEC 	 EQU 0023H
T2_ISR_VEC 		 EQU 002BH

http://bookboon.com/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

136

A51 Examples

PROG_AREA 		 EQU 0030H 	 ; Main program area starting point
;
;
	 ORG RESET
	 LJMP MAIN 		 ; Continue with MAIN, jumping over the interrupt vector table.

	 ORG EXT0_ISR_VEC
; 	 LJMP EXT0_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG T0_ISR_VEC
	 ; LJMP T0_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG EXT1_ISR_VEC
;	 LJMP EXT1_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG T1_ISR_VEC
; 	 LJMP T1_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG SERIAL_ISR_VEC
; 	 LJMP SERIAL_ISR 		 ; point to my interrupt service routine
	 RETI 			 ; remark this line if using ISR

	 ORG T2_ISR_VEC
	 LJMP T2_ISR 		 ; point to my timer 2 service routine
; 	 RETI 			 ; remark this line if using ISR

ORG PROG_AREA

MAIN:
; initialise stack pointer past bit-addressable area

MOV SP, #30H

; First clear the 8032 Internal RAM (from 0 to FFH)
CLR A
MOV R0, #0FFH

CLR_RAM:
MOV @R0, A
DJNZ R0, CLR_RAM

; initialise serial port
MOV R7, #57

	 LCALL INIT_SERIAL

; print message
	 MOV DPTR, #MESSAGE1
	 LCALL TX_CMSG

; initialise 8255 i/o chip
	 MOV DPTR, #CONTROL
	 MOV A, #CTRL_WD
	 MOVX @DPTR, A 		 ; initialise 8255 ports mode

http://bookboon.com/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

137

A51 Examples

; initialise timer 2
	 MOV RCAP2H, #4BH 	 ; re-load timer counters
	 MOV RCAP2L, #0FEH 	 ; 50 msec timer delay
	 MOV TH2, RCAP2H 		 ; used for the first interrupt
	 MOV TL2, RCAP2L

	 MOV T2CON, #0 		 ; set timer 2 16-bit auto-reload

	 SETB TR2 			 ; start timer 2
	 SETB ET2 			 ; enable interrupts from timers
	 SETB EA 			 ; allow interrupts
	 SETB PT2 			 ; Timer 2 with high priority

; start traffic lights
	 MOV DPTR, #TABLE 	 ; point DPTR to table
	 MOV A, DPL 		 ; DEC DPTR
	 JNZ DECSKIP
	 DEC DPH
DECSKIP:
	 DEC DPL 			 ; DPTR now points ahead of TABLE
	 MOV R7, #1
	 MOV R6, #1 		 ; R6,R7 set to 1 to start immediately from Top of Table
	 SETB TF2 			 ; simulate timer 2 interrupt

LOOP: SJMP LOOP 		 ; main program simply loops here
 				 ; forever. It could be doing something
 				 ; else whilst the timer takes care of
 				 ; scheduling the display pattern.

; traffic control isr.
; permanent data stored in code (eprom) area		
T2_ISR:
	 CLR TF2 			 ; clear interrupt flag
	 PUSH ACC
	 DJNZ R6, EXIT_NOW 	 ; exit immediately if 1 second
 				 ; has not yet passed
	 MOV R6, #20 		 ; reset R6 otherwise
	 DJNZ R7, EXIT_NOW 	 ; has required time passed ?
	 INC DPTR 		 ; yes
	 CLR A 			 ; we need to clear it first
	 MOVC A, @A + DPTR 	 ; get next pattern
	 JNZ SKIP 			 ; 0 pattern indicates end of table, hence start again
	 MOV DPTR, #TABLE 	 ; acc=0 hence no need to clear it
	 MOVC A, @A + DPTR 	 ; load 1st pattern in Acc,
SKIP: PUSH DPH
	 PUSH DPL
	 MOV DPTR, #PORTB
	 MOVX @DPTR, A 		 ; light up leds with pattern
	 POP DPL
	 POP DPH
	 INC DPTR
	 CLR A
	 MOVC A, @A + DPTR 	 ; get duration byte and
	 MOV R7, A 		 ; store the seconds in R7

http://bookboon.com/

Download free eBooks at bookboon.com

PaulOS An 8051 Real-Time Operating System
Part I

138

A51 Examples

; initialise timer 2
	 MOV RCAP2H, #4BH 	 ; re-load timer counters
	 MOV RCAP2L, #0FEH 	 ; 50 msec timer delay
	 MOV TH2, RCAP2H 		 ; used for the first interrupt
	 MOV TL2, RCAP2L

	 MOV T2CON, #0 		 ; set timer 2 16-bit auto-reload

	 SETB TR2 			 ; start timer 2
	 SETB ET2 			 ; enable interrupts from timers
	 SETB EA 			 ; allow interrupts
	 SETB PT2 			 ; Timer 2 with high priority

; start traffic lights
	 MOV DPTR, #TABLE 	 ; point DPTR to table
	 MOV A, DPL 		 ; DEC DPTR
	 JNZ DECSKIP
	 DEC DPH
DECSKIP:
	 DEC DPL 			 ; DPTR now points ahead of TABLE
	 MOV R7, #1
	 MOV R6, #1 		 ; R6,R7 set to 1 to start immediately from Top of Table
	 SETB TF2 			 ; simulate timer 2 interrupt

LOOP: SJMP LOOP 		 ; main program simply loops here
 				 ; forever. It could be doing something
 				 ; else whilst the timer takes care of
 				 ; scheduling the display pattern.

; traffic control isr.
; permanent data stored in code (eprom) area		
T2_ISR:
	 CLR TF2 			 ; clear interrupt flag
	 PUSH ACC
	 DJNZ R6, EXIT_NOW 	 ; exit immediately if 1 second
 				 ; has not yet passed
	 MOV R6, #20 		 ; reset R6 otherwise
	 DJNZ R7, EXIT_NOW 	 ; has required time passed ?
	 INC DPTR 		 ; yes
	 CLR A 			 ; we need to clear it first
	 MOVC A, @A + DPTR 	 ; get next pattern
	 JNZ SKIP 			 ; 0 pattern indicates end of table, hence start again
	 MOV DPTR, #TABLE 	 ; acc=0 hence no need to clear it
	 MOVC A, @A + DPTR 	 ; load 1st pattern in Acc,
SKIP: PUSH DPH
	 PUSH DPL
	 MOV DPTR, #PORTB
	 MOVX @DPTR, A 		 ; light up leds with pattern
	 POP DPL
	 POP DPH
	 INC DPTR
	 CLR A
	 MOVC A, @A + DPTR 	 ; get duration byte and
	 MOV R7, A 		 ; store the seconds in R7

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

PaulOS An 8051 Real-Time Operating System
Part I

139

A51 Examples

EXIT_NOW:
	 POP ACC
	 RETI

; permanent data, can be stored in code area (not rewriteable)
; Table storing Pattern and Duration in seconds
;
TABLE:

DB 82H,10 	 ; R - G
 	 DB 84H,2 		 ; R - Y
 	 DB 88H,1 		 ; R - R
 	 DB 0C8H,2 	 ; RY - R
 	 DB 28H,8 		 ; G - R
 	 DB 48H,2 		 ; Y - R
 	 DB 88H,1 		 ; R - R
 	 DB 8CH,2 	; R - RY
 	 DB 0		 ; end of array marker

; Message must terminate with a zero for correct performance of the print routine
MESSAGE1: 	 db 	 13,10,’This is a serial port test.’,CR,LF,LF
 		 db 	 ‘Read the program carefully and try to’,CR,LF
 		 db 	 ‘understand it well.’,CR,LF,0

 END

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

